
Maximum Cut: Learning-based approaches

Victor Pekkari
[epekkari@ucsd.edu]

University of California, San Diego

June 2025

Abstract

This paper explores deep learning approaches to the Maximum cut
(max-cut) problem, motivated by its NP-hardness and the practical limits
of classical approximations. While Goemans–Williamson (GW) delivers
a 0.878 guarantee and is often near-optimal, it can still underperform on
certain graph families. We ask three questions: (i) how to generate prin-
cipled training data for neural solvers, (ii) which architectures work best
in practice, and (iii) where, if anywhere, learned methods can outperform
state-of-the-art polynomial-time approximations. We construct training
sets solely via planting of optimal solution, and evaluate encoder–decoder
models. In addition to fast, highly parallel inference, Many neural mod-
els can offer lower effective time complexity than SDP-based pipelines in
practice. Our results suggest a trade-off: GW is uniformly strong across
graph classes but follows a fixed rounding scheme, whereas learned models
can adapt to specific graph families and capitalize on structure—provid-
ing a complementary tool where GW nears its worst case. This work is a
meant as a step toward a recipe for learning-based max-cut solvers.

Code can be found at https://github.com/victor99pekk/ML_4_MAXCUT.

1 Introduction
The max-cut problem concerns partitioning the vertex set of a graph into two
subsets so as to maximize the total weight of the edges crossing between them.

Definition 1.1 (Maximum Cut). Let G = (V,E,w) be an undirected weighted
or unweighted graph with edge weights wij ∈ R. For S ⊆ V , the maximum cut
value is

max
S⊆V

∑
{i,j}∈E

wij 1[i∈S, j /∈S].

1

2 GEOMANSS WILLIAMSON’S AND
FEIGE SCHECTMAN GRAPHS

Since the Max-Cut problem is NP-hard, exact algorithms are computationally
infeasible for large instances, and approximation methods become indispens-
able. This motivates the exploration of learning-based approaches. Neural
networks have the potential to discover high-quality cuts more efficiently than
classical state of the art approximation algorithms. However, before attempting
to surpass sota approximation algorithms with learned models, it is essential
to understand the practical performance of the approximation algorithms them
self.

Geomanss & Williamson’s algorithm for max-cut relaxes the max-cut problem
into a semidefinite programming problem (SDP). Solving this relaxed problem
and translating the solution from a set of unit vectors {Xi : ||Xi|| = 1} into the
set of the solution for the max-cut x ∈ {0, 1}n. We can mathematically prove
that we will achieve at worst a cut score of 0.878 of the max-cut. This algorithm
comes closer to the optimum in practice however, frequently exceeding 99% of
the optimal value. For some families of graphs it is even exact like for complete
bipartite graphs, it is known to be exact [3]. Consequently, if GW were consis-
tently near-optimal on all graphs, the motivation for neural approaches would
be limited. Crucially however, there exist graph constructions where the perfor-
mance of GW is closer to it’s theoretical lower bound. These hard instances are
the kinds of graphs where learning-based approaches can offer an advantage in
max-cut value. Furthermore neural networks can be highly parallelized, making
inference fast and scalable. This is also a potential edge over the GW algo-
rithm. Therefore, even on graph families where GW is known to perform well,
it is still worthwhile to explore learning-based methods, since they can achieve
comparable or better performance at significantly lower computational cost, or
faster inference.

2 Geomanss Williamson’s and
Feige Schectman graphs

2.1 Geomanns & Willimson’s lower bound
The SDP relaxation not only gives us a lower bound of 0.878 but also the actual
partition to achieve it. The lower bound and partition comes from maximizing
the semidefinite problem below.

SDP (G) :=
1

4
max{

n∑
i,j=0

Aij(1− 〈XiXj〉) : X ∈ Rn, ||X||2 = 1 for all i}

To translate the unit sphere vectors from the SDP problem we used randomized
rounding with a hyperplane.

g ∼ N (0, In), xi = sign〈Xi, g〉 i = 1,2,..., n

2

2 GEOMANSS WILLIAMSON’S AND
FEIGE SCHECTMAN GRAPHS

It is helpful to study the derivation of the GW lower bound, as knowing what
type of assumptions and what features of the SDP probelm we use to derive the
lower bound, can help us understand for what type of graphs the GW algorithm
might be close to its lower bound.

Theorem 2.1 (0.878-approximation rounding for max-cut). Let G be a graph
with adjacency matrix A, further let xi be the randomized rounding for the
solution Xi to the semidefinite program.

E [CUT(G, x)] ≥ 0.878SDP(G) ≥ 0.878MAX-CUT(G)

Proof.

E [CUT(G, x)] =
1

4

n∑
i,j=1

Aij(1− Exixj)

By using the definitions of the xi labels from the randomized rounding

1− Exixj = 1− sign〈g,Xi〉 · sign〈g,Xj〉

= 1− 2

π
arcsin〈Xi, Xj〉 Grothendieck’s identity

≥ 0.878 (1− 〈Xi, Xj〉) (∗)

This conclcudes the proof that E [CUT(G, x)] ≥ 0.878E [SDP(G)], The proof
that E [SDP(G)] ≥ E [MAX-CUT(G, x)] is trivial since max-cut operates over a
subset of the domain of the semidefinite program.

An important observation from the proof is that 〈Xi, Xj〉 is seldom zero, mean-
ing the true lower bound often exceeds 0.878. This further proves the claim that
the GW algorithm most often performs close to the optimum.

2.2 Feige & Schechtman graphs
We concluded in the previous section that the SDP relaxation is most often
predicted to perform better than the lower bound 0.878, something we did not
note is that there is a family of graphs where the SDP relaxation performs close
to the lower bound. This family of graphs is called Feige & Schechtman graphs
(FS graphs).

Consider the last line of the proof of Theorem 2.1.

1− Exixj ≥ 0.878 (1− 〈Xi, Xj〉) (∗)

If we insert this into the fomula for the expected cut we get

E [CUT(G, x)] ≥ 1

4

n∑
i,j=1

Aij(1− 0.878 (1− 〈Xi, Xj〉)) = E [SDP(G)]

3

2 GEOMANSS WILLIAMSON’S AND
FEIGE SCHECTMAN GRAPHS

In order for the expected cut to approach the worst–case factor 0.878·MAX-CUT(G),
we want the SDP vectors to be as decorrelated as possible: if 〈Xi, Xj〉 ≈ 0 for
many pairs, the inequality (∗) is nearly tight and the guarantee stays close
to 0.878. Note, however, that making vectors orthogonal does not force the
rounded cut (or the SDP value) to equal 0.878 · MAX-CUT(G); it only pre-
vents the right–hand side of (∗) from being larger. Any nonzero correlations
〈Xi, Xj〉 6= 0 lift the bound above 0.878, so to keep the guarantee near 0.878 we
need many inner products to be close to zero.

Definition 2.2. (Feige–Schechtman graphs)

Let FS(n, θ) denote a Feige–Schechtman graph with n nodes and angle threshold
θ. Let each vertex vi be a point uniformly chosen from the unit sphere Sn−1

vi ∼ Sn−1

Let vertices vi, vj be connected if there inner product is below a chosen threshold
θ.

(i, j) ∈ E iff 〈vi, vj〉 ≤ cos(π − θ)

The edges can either be un-weighted or weighted with a decreasing function

f (〈vi, vj〉) = Aij

Something import to note about any graph and not just FS-graphs is that for
the graph to have a non-trivial solution the graph cannot just contain nodes
that are connected in pairs. The solution would then be trivial (separate the
pairs). The reason this is worth noting in contact with the FS graphs is that as
we decrease the angle threshold, we lower the chance of vertices being close to
orthogonal and therefore connected, and even more so we decrease the chance of
nodes being connected to more than one vertice, which makes we might converge
to the trivial example of a sparse graph were vertices are connected to a low
number of other vertices and then solution becomes trivial.

2.2.1 Density of FS graphs

It is in fact possible to prove that two random vectors on the unit sphere tend to
be almost orthogonal in high dimensional space. This is very good as this implies
that there are FS graphs that aren’r sparse and have a non-trivial solution, a
potential family of graphs where neural networks might beat the GW algorithm
in performance. To prove this almost orthogonality between random vectors on
the unit sphere we use the proprties of isotropic vectors.

Definition 2.3. (Isotropic vectors)

A vector X ∈ Rn is isotropic iff

E〈x,X〉 = ||x||22 for all x ∈ Rn

4

2 GEOMANSS WILLIAMSON’S AND
FEIGE SCHECTMAN GRAPHS

Theorem 2.4. let X,Y be two isotropic vectors sampled form the scaled unit
sphere; X,Y ∼ Unif

(√
nSn−1

)
|〈X,Y 〉| ∼ 1√

n

Proof.

E〈X,Y 〉2 = EY EX

[
〈X,Y 〉2|Y

]
= EX ||X||22 using definition of isotropic vectors
= n

We already know by definition that

E||X||22, E||Y ||22 =
√
n

That concludes the proof that the vectors X,Y ∼ Unif
(√

nSn−1
)

are isotropic.

Now consider the normalization of the vectors sampled from Unif
(√

nSn−1
)

in
theorem 2.4

X∗ =
X

||X||2
, Y ∗ =

Y

||Y ||2

|〈 X

||X||2
,

Y

||Y ||2
〉| = 1

n
|〈X,Y 〉| ∼ 1√

n

Here we can see that the inner product of the two normalized vectors X∗, Y ∗

approaches 0 as n grows. Proving the almost orthognality between two random
vectors on the unit sphere in high dimension.

5

3 GENERATING TRAINING DATA

2.2.2 Numerical experiment of almost orthogonality in high dimen-
sion

Figure 1: density as a function of log(dimension) for FS(50, 1°) graph

This was done in python by generating FS(50, 1°) graphs (50 vertices, angle
threshold 1°) with vertices as vectors on the unit sphere, and only connecting
them if the angle between them was in the range (89◦, 91◦). The density was
then calculated by the ratio of non-zero entries in the adjacency matrix.

Density =
#{Aij : Aij 6= 0}

#{Aij : Aij = 0 ∨Aij 6= 0} − n

where A is the adjacency matrix. n is the number of vertices in the graph, to
account for the zero filled diagonal.

This empirical experiments shows that we can easily control the density of ran-
domly generated FS graphs by adjusting the dimension from what the unit
sphere vectors are sampled from.

3 Generating Training Data
A key challenge in applying supervised learning to max-cut is the lack of labeled
data. Supervised learning (SL) methods require pairs of inputs (graphs) and
outputs (optimal partitions), but computing optimal solutions is intractable
for all but small instances due to the NP-hardness of Max-Cut. which makes
training data generation a big problem for SL.

To address this, one approach is to plant optimal solutions, i.e., generate graphs
from with a known optimal max-cut partition of vertices. This makes large-
scale data generation feasible, though at the cost of reduced control over graph

6

3 GENERATING TRAINING DATA

structure. In particular, planted instances may not capture the special graph
families where classical heuristics, such as the GW algorithm, perform poorly.

To target such harder cases, we also generate graphs without optimal labels,
using instead the GW solution as the training signal. Our overall strategy is thus
twofold: (i) pretrain the network in a supervised manner on GW-labeled data,
and (ii) fine-tune it via reinforcement learning to surpass GW’s performance.

All instances of graphs generated was created with gen_maxcut_data.py, where
every generated row was one instance of a graph. The graphs were stored as
a flattened adjacency matrix, followed by the optimal partition (a vector of 0’s
and 1’s where the value at index i in this vector indicated whether node i was in
partition 0 or 1), and lattice followed by the cut value from either the planted
solutions or Geomans williamsons.

3.1 Planting solutions
We have two approaches to planting a solution, one of which involves refor-
mulating an uncontrained boolean quadratic problem (ubqp) into the max-cut
problem while keeping equivalence to the original ubqp. The other one involves
projecting the solution of a relaxed ubqp to be optimal for a given adajcency
matrix and partition of vertices.

3.1.1 Reformulating an unconstrained boolean quadratic problem

Our goal is to reformulate the problem below into the max-cut problem formu-
lation, while keeping equivalence to the ubqp.

min{ f(x) = x>Qx− c>x : x ∈ {−1, 1}n }, (1)

one obtains the following Lagrangian stationarity system [4]:

find Q, c, x, λ

s.t. (Q+ diag λ)x = c,

Q+ diag λ � 0,

x ∈ {−1, 1}n.

(2)

Here Q ∈ Rn×n is symmetric (possibly indefinite) and c ∈ Rn. Choosing

λi ≥
∑
j 6=i

|Qij | (1 ≤ i ≤ n)

makes Q+diag λ diagonally dominant (hence positive semidefinite). Given any
“planted” x ∈ {−1, 1}n, setting

c = (Q+ diag λ)x

enforces the stationarity equation and certifies x as an optimal solution of (1)
under the standard Lagrangian argument.

7

3 GENERATING TRAINING DATA

Algorithm 1 maxcut data generator (while keeping optimality) [1]
Require: Dimension n; base = 10
Ensure: Matrix Q; Vector x

1: Generate an n× n matrix Q with i.i.d. entries from standard normal
2: Q← base×Q
3: Q← 1

2 (Q+Q>) . make Q symmetric
4: Generate x ∈ (0, 1)n uniformly at random
5: x← 2x− 1
6: Compute λ←

∑
abs(Q) row-wise

7: Form Q′ with λ on the diagonal and zeros elsewhere
8: c← (Q+Q′) · x
9: Set w0j , woj ← 1

4

(∑i−1
j=1 qji +

∑n
j=i+1 qij

)
+ 1

2ci, 1 ≤ j ≤ n

10: Set wij ← 1
4qij , 1 ≤ i < j ≤ n

11: Update Q←
(
q>1j , q

>
2j , . . . , q

>
(n+1)j

)
←

(
w>

0j , w
>
1j , . . . , w

>
nj

)
12: Set x0 ← 1 and update x← 2x+ 1
13: Update x← (x1, x2, . . . , xn+1)← (x0, x1, . . . , xn)

Flaw. This construction tends to yield weight/adjacency matrices with a dis-
proportionately large first row and first column. Intuitively, the vector c aggre-
gates row magnitudes of Q (via the diagonal–dominance choice of λ) and aligns
with x. How disproportionate the final adjacency matrix becomes depends on
the dimension of the adjacency matrix as well as the probability for x being part
of group one since that is what our new augmented node will be. The graphs
generated from Algorithm 1 becomes more and more disproportionate as the
graph size increases.

The graphs represented by these adjacency matrix are hub-like with one vertice
that edges that very large in magnitude compared to other edges between other
vertices in the graph.

3.1.2 Magnitude inflation in the first row/column

Let n be the number of original vertices, and let the augmentation introduce a
special vertex 0. For i ∈ [n], the construction in Algorithm 1 produces

w0i =
1

4

n∑
j=1
j 6=i

qij +
1

2
ci, wij = 1

4 qij (i 6= j), (3)

where c = (Q + Q′)x with Q′ = diag(λ) and λi ≥
∑

j 6=i|Qij | (diagonal domi-
nance). We want to understand why entries in the first row/column {w0i, wi0}
tend to dominate the remaining wij .

Modelling assumptions. (used only for expectation/upper bound estimates):

8

3 GENERATING TRAINING DATA

(A1) Off-diagonal homogeneity: |qij | ≈ |q| for i 6= j (write q for the typical
magnitude).

(A2) Tight diagonal dominance: λi ≈
∑

j 6=i|qij | ≈ (n− 1)|q|.

(A3) Labels as Bernoulli: we analyse x ∈ {0, 1}n with E[xj] = p (we will set
p = 1

2 later) This makes sense since it just means a vertice has the same
probability of belonging to either partition.

Lemma 3.1 (Expected scaling of the augmented weights). Under (A1)–(A3)
with p = 1

2 ,

Ex

[
ci
]
=

∑
j 6=i

qij Ex[xj] + λi Ex[xi] ≈
n− 1

2
q +

1

2
λi, (4)

Ex

[
w0i

]
≈ n− 1

4
q +

1

2
Ex[ci] ≈

n− 1

2
q +

1

4
λi, (5)

Ex

[
|w0i|

]
.

3(n− 1)

4
|q|. (6)

In contrast, for i 6= j, |wij | = 1
4 |qij | ≈

1
4 |q|.

Proof. Equation (4) is the definition of ci. Insert (4) into (3) to obtain (5). For
(6), apply the triangle inequality and use (A1)–(A2):

|w0i| ≤
1

4

∑
j 6=i

|qij |+
1

2
|ci| ≤

n− 1

4
|q|+ 1

2

(n− 1

2
|q|+ 1

2
λi

)
.

3(n− 1)

4
|q|.

Corollary 3.2 (First-row/column inflation factor). Comparing a typical aug-
mented entry to a typical non-augmented one yields

E[|w0i|]
E[|wij |]

.
3(n−1)

4 |q|
1
4 |q|

= 3(n− 1).

Thus the first row/column can be up to O(n) times larger in magnitude.

It is convenient to summarise the upper-bound growth by the function

g(n) = 3(n− 1) = |3n− 3|,

which we use only as a scale indicator for the expected inflation.

9

3 GENERATING TRAINING DATA

20 40 60 80 100

50

100

150

200

250

n (number of vertices in graph)

g(n) = w0j/wij (i, j 6= 0)

Figure 2: Upper-bound scaling g(n) for the first row/column magnitude infla-
tion.

3.1.3 Planting solutions by projecting

The unbalanced nature of the ubqp planting in section 3.1.1 is a problem if we
want to train neworks with supervised learning to generalize to more ”regular”
graphs that dont have one vertice whose edge magnitudes are a lot larger than
edge magnitudes between other vertices in the graph. For this we can use a
projection planting instead. This method gives us a way to create training data
that is more similar to graphs that we want our networks to generalize to.

To construct this projection we start with a formulation of the max-cut:

max
x∈{0,1}n

1

4

∑
i<j

Wij(1− xixj) = C − 1

4
x>Wx

If we instead consider the relaxed problem over the vector [0, 1]n, we have a
convex optimization problem.

Since the relaxed problem is a convex optimization problem we can guarantee
that

Qx∗ = 0 and Q � 0 =⇒ x∗ = argminx∈[0,1]n
1

2
x>Qx

Furthermore we know that

min
x∈[0,1]n

x>Wx ≤ min
x∈{0,1}n

x>Wx

10

3 GENERATING TRAINING DATA

This means that if we successfully plant a solution from the set x∗ ∈ {0, 1}n to
the relaxed problem, then we know that it will also be the optimal partition for
the maximum cut. We just have to construct an adjacency matrix that fulfills
the conditions above.

Construction. Fix x?∈{±1}n, sample valid diag dominant adjacency matrix
Q, set

P = I − γ
x?(x?)>

n
, W = P QP, Q � 0,

Now consider the projection matrix Px∗ together with its corresponding x∗ ∈
{0, 1}n, Px∗ = 0 =⇒ PQPx∗ = 0. The reason we multiply P on the left side
is to keep the symmetric property that we need in a adjacency matrix.

PQPx∗ ≈ 0, Q = Q>

We end by setting the diagonal W = PQP to zero. This doesnt change the
optimal partition or the max-cut value.

Algorithm 2 Projection-planting Max-Cut data
Require: n ≥ 0;
Ensure: symmetric W ; planted x?∈{±1}n

1: Sample x? ∼ {±1}n
2: Sample A ∼ Rn×n; set Q← AA>

3: P ← In −
1

n
x?(x?)> (P>=P, Px?=0)

4: W ← PQP
5: Wii ← 0 ∀i (does not affect max-cut)
6: return W, x?

3.1.4 Control over Edges

To study how we can control the edge values in the adjacency matrix we start
with some assumptions.

(A1) Off-diagonal homogeneity: |qij | ≈ |q| for i 6= j (write q for the typical
magnitude).

(A2) Tight diagonal dominance: λi ≈
∑

j 6=i|qij | ≈ (n− 1)|q|.

(A3) Labels as Bernoulli: we analyse x ∈ {0, 1}n with E[xj] = p (we will set
p = 1

2 below) This makes sense since it jsut means a vertice has the same
probability to belong to either partition.

11

3 GENERATING TRAINING DATA

Lemma 3.3 (Expected scaling of the augmented weights). Under (A1)–(A3)
with pi =

1
2 ,

Ex[P] =
1

n


n− p1p1 p1p2 · · · p1pn
p2p1 n− p2p2 · · · p2pn

...
...

. . .
...

pnp1 pnp2 · · · n− pnpn

 (7)

QEx[P] ≤ 1

n

 nλ+
∑

i q p
2 · · · nλ+

∑
i q p

2

...
. . .

...
nλ+

∑
i6=1 q p

2 · · · nλ+
∑

i 6=1 q p
2

 (8)

≤ 1

n

nλ+ (n− 1)q p2 · · · nλ+ (n− 1)q p2

...
. . .

...
nλ+ (n− 1)q p2 · · · nλ+ (n− 1)q p2

 (9)

Ex[P]QEx[P] ≤ 1

n2

n
[
nλ+ (n− 1)q p2

]
· · · n

[
nλ+ (n− 1)q p2

]
...

. . .
...

n
[
nλ+ (n− 1)q p2

]
· · · n

[
nλ+ (n− 1)q p2

]
 (10)

If we know analyze one single entry and use our assummptions that nodes have
equal chance of belonging to group 0 or 1, and our assumptions of the magnitude
proprtions between diagonal elements and the rest in the Q matrix.

wij ≤
n(n− 1)q + (n− 1)q 0.25

n
=

n2q − nq + 0.25nq − 0.25q

n

≤ nq − 0.75q − 0.25q

n

We can see here that this projection planting gives us a lot more control over
the edge values, since first of all, they all have the same magnitude, and second
of all they are directly dependent on the q entries, which we have direct control
over, which means we have direct control over the magnitude of the entries in
the final adjacency matrix W , we just have to find a fitting q-value that fits our
dimension n.

3.2 Training data without planted solutions
The con with using the methods above for planting solutions is like we previously
mentioned that we loose control over the graph structure. We loose the ability
to guarantee statistical properties for the graph such as probability of nodes
being connected and the edge-value distribution.

When generating training data without planted solutions, we instead rely com-
pletely on reinforcement learning (RL). This allows us to train our network to

12

4 NEURAL NETWORK ARCHITECTURES

maximize some function (the maximum cut function in our case) without having
an explicit target.

Without the need to plant solutions, we have more control over the structure
of the graphs which lets us train our networks on graphs that are actually hard
for current the GW algorithms like FS graphs.

4 Neural network architectures
The neural architectures used in this study were initially inspired by the LSTM-
based model proposed in [1]. Building on this foundation, we explored two main
extensions aimed at improving performance. First, we introduced a graph neural
network encoder to process the adjacency matrix more effectively by exploiting
the underlying graph structure. Second, we replaced the LSTM cells with Trans-
former layers, enabling parallelized sequence processing and potentially better
modeling of long-range dependencies between nodes.

4.1 Long short-term term memory
LSTM:s solve the problems of exploding/vanishing gradient commonly encoun-
tered in simpler RNNs by introducing a separate memory cell Ct alongside the
hidden state ht, and by using gating mechanisms to control what information is
stored, forgotten, and outputed at each time-step. All inputs going into the ac-
tivation functions in the gates are mulitplied by a learnable weight. The LSTM
cell can this way efficiently learn what forget, remember anc carry forward by
ajdusting it’s weights during training.

Figure 3: LSTM Cell

By explicitly maintaining the cell state Ct and using these gates, the LSTM can
decide at each time step how much of the past information to carry forward (via

13

4 NEURAL NETWORK ARCHITECTURES

ft), which new information to write (via it and C̃t), and what to expose as the
current hidden representation (via ot).

ft = σg (Wfxt + Ufht−1 + bf)

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

c̃t = σc (Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

4.2 Transformers
Transformers further improve on the idea of having sequential input data, and
generating sequentiel output data. Transformers removes the explicit recurrence
altogether and instead rely on self-attention to let every position in the input
sequence exchange information with every other position in a single, constant-
depth layer. Each input token1 xt ∈ Rdmodel is linearly projected to a query,
key, and value. By representing the input-tokens with learnable key-, query-
and value vectors, we can represent what a certain input-token is looking for
(query), what it represents (key), and lastly what context it provides (value) at
the same time.

Q = XWQ, K = XWK , V = XWV , WQ,WK ,WV ∈ Rdmodel×dk ,

and the pairwise compatibility between tokens is measured by the scaled dot-
product

Attn(Q,K, V) = softmax
(
QK>
√
dk

)
V.

This produces a new representation in which each node is a weighted sum of
values from every other node, with weights determined by how strongly its
query matches their keys. By stacking several of these “attention heads’’ in
parallel (multi-head attention), followed by a position-wise feed-forward layer,
a Transformer encoder layer can model long-range dependencies without the
vanishing-gradient bottleneck that plagued vanilla RNNs and motivated LSTMs.

4.2.1 Benefits with transformer as opposed to LSTM

Compared with the LSTM encoder–decoder above, a Transformer offers two
concrete advantages:

1. Parallelism. All nodes are processed simultaneously, cutting training
time from O(n) per layer to O(1) on GPU/TPU hardware.

1In our Max-Cut setting a “token’’ is a node, represented by its adjacency-row fingerprint
introduced in the previous subsection.

14

4 NEURAL NETWORK ARCHITECTURES

2. Global context in every layer. Unlike an LSTM where each input
can only interact with a summarization of past only past tokens and can-
not interact with future inputs, a single encoder self-attention layer in a
Transformer lets every token directly attend to all other tokens (past and
future) in the sequence, and even the transformer decoder let’s every input
token directly interact with all past tokens. This full pairwise interaction
makes it far easier to capture non-local structures2

4.3 Graph attention network
Graph attention networks (GATs) come from the idea of transformers. The idea
is to update the vertice encodings based on it’s neighbors. The intuition is that
we this way can find a more accurate hidden represenation of the vertice than
it´s original encoding.

4.3.1 Graph attention layers

Figure 4: GAT architecture [2]

Consider the graph G vertices v ∈ G, where we denote the set of neighbors for
a vertice as N (v). Every vertice has a feature vector ~v ∈ RN N is number of
features, the set of feature vectors in the graph can be written as {~v|v ∈ G}.
The graph attention layer produces a new set of vertice-feature vectors ~v ∈ RN∗

where N∗ not necessarily equals N .

We use a learnable weight matrix W ∈ RF∗×F to project every vertice vector
into the new dimension. We then perform self-attention by concatenating the
new feature vectors for neighbouring vertices

2The context of other rows in the adjacency matrix is crucial for understanding the meaning
of a row in our case

15

4 NEURAL NETWORK ARCHITECTURES

eij =

[
W~vi
W~vi

]>
ã , eij ∈ R denotes the importance of node j to node i

Where ã ∈ R2·F∗ is a learnable vector, and nodes i and j are neighbors vi ∈
N (vj).

We lastly apply the leaky ReLu, followed by the softmax to complete the atten-
tion process

αij = (SoftMaxi ◦LReLU) (eij)

Last note. some graphs are dense and doing attention on all neighbors doesnt
work. You can then slightly modify the criteria for doing attention from [vi ∈ N (vj)]
to [vi ∈ N (vj) and (vi, vj) ≥ θ], where θ ∈ R is an arbitrary threshold.

4.4 Complexity of inference | Transfomer and LSTM
The computational complexity and the inference time are two very important
factors in this project since the whole purpose is to find a way to either find the
maxcut faster than current approximation algorithms, or a more optimal cut.

Transformers: The dominating term in the timecomplexity for transformers
occur in the self-attention, which consist of matrix mulitplications when we
compute attention scores between all tokens. Calculating this consist of 2 matrix
multiplications (Q · KT followed by Attn · V). The naive way for multiplying
matrices has a complexity of O(n3). You might think that this would mean that
attention has a timecomplexity of O(n3), but the timecomplexity is in fact (for
one layer):

O(n2 · d) assuming n>d−−−−−−−−−−→ O(n2)

(d is embedding size and n is the number of inputs)

This said, a GPU can drastically speed this up by calculating the parts of the
matrix multiplications in parallel.

LSTM: The heaviest computations in the LSTM cell are the multiplications
between the weight matrices and the input vectors, before we apply the sigmoid
function W · x. The dense products cost:

Wx · xt =⇒ O(dxdh) Wh · ht−1 =⇒ O(d2h)

After removing all terms that aren’t the heaviest we get the following timecom-
plexity for on LSTM cell for n timesteps:

O(n(dxdh + d2h)

16

5 ENCODER–DECODER ARCHITECTURE

The matrix-vector multiplications can be speed up by a GPU the same was as
the matrix multiplications in the transformer, but the linear increase with the
input sequence length remains.

Conclusion Both models benefit substantially from GPU acceleration, yet
their scaling differs. Transformers are quadratically dependent on sequence
length but fully parallelisable, whereas LSTMs are linearly dependent on se-
quence length but sequential across time-steps. For long sequences on GPU-
hardware, a Transformer layer is often faster in practice despite its higher O(n2)
arithmetic cost. But if we do have a shorter input sequence it is possible that a
LSTM model will be faster.

5 Encoder–Decoder Architecture
All models tested were encoder-decoder models. We tried the encoder decoder
originally from Gu and Yang [1]3, and later tried improving it the model by
implementing the vertice-encoder with a GAT, and the adjacency matrix en-
coder and decoder with a transformer. That said all models we used, implented
the high level architecture below, what varied was how they implemented each
block.

Vertice Encoding Adjacency matrix
encoding

Encoder

Decoder

Decoder

A ŷ
Q h

Figure 5: High-level architecture of all Neural models implemented

where A ∈ Rn×n is the adjacency matrix, Q ∈ RN×N is the new adjacency
matrix that contains embedded vertices, h ∈ Rj is the encoding of Q, and ŷ is
the predicted partition. The input of all model implementations is a sequence
of some rows from the adjacency matrix, and the output of all implementations
is a sequence of vertices. This makes all models Seq2Seq models.

We implement the vertex encoder either with just a linear projection of the rows
in the adjacency matrix. Or with GAT by computing attention scores between
pairs of nodes, and then multiplying the edges in the adjacency matrix by the
attention score between the vertices in question.

Qij = Aij · αij

where Q is our new adjacency matrix, A is the old, and αij is the attention
score between the two nodes.

3here the vertex encoding is a linear projection from row in adjacency matrix, adjacency
encoding and decoder blocks are LSTM cells

17

5 ENCODER–DECODER ARCHITECTURE

5.1 Unfolding in time
Our models differ only in how the encoder consumes the adjacency sequence.
The LSTM encoder processes rows autoregressively—one row at a time—so its
hidden state ht summarizes all past rows (x1, . . . , xt) when producing ht+1.
By contrast, the Transformer encoder is non-autoregressive: self-attention lets
every row attend to all others in a single pass, yielding a parallel encoding of the
entire matrix. In both architectures, the decoder is autoregressive: it generates
the output sequence token by token (pointer selections), conditioning each step
on the previously emitted tokens.

Figure 6: showing autoregressive encoding-decoding. from Gu and Yang pa-
per [1]

5.1.1 Encoding

The input to our adjacency matrix encoder (a-encoder) is a sequence xi:N =
x1, x2, ..xN , where xi is the feature vector of vertice i in a graph with size N .

LSTM with the LSTM encoder we feed the whole input sequence x1, .., xN

and then use the last hidden state as the encoding for the adjacency matrix. This
hidden state from the encoder will work as the starting state for the decoder.

Transfomer the transformer encoder works similarly to the LSTM. We feed
the x1, .., xN and use the last output as the encoding

5.1.2 Decoding

After feeding the model the start state it outputs an output sequence y1:n =
y1, y2, .., yn not necessarily the same length as the input. Our model is a pointer
network, which means it will point to the index of the most probable next vertice
in the partition of the previously outputed nodes.

The output at yi is computed based on the idea of the conditional probability
of

max
S(y), S(x)

n∏
t=1

P (yi |xj1 , xj2 , ..., xji−1
)

where S(y) = y1, .., yn, S(x) = x1, .., xN , and all entries in the two sequences
are unique.

18

6 EXPERIMENTS

The network can model this conditional probability (of belonging to the same
partition as the already outputed vertices) as the attention score for every node
i at timestep t

Attentioni(t) ≈ P (yi |xt1 , xt2 , ..., xtt−1
)

At every timestep we pick the vertice with the highest attention score (or high-
est conditional probability) after having masked vertices that we have already
picked to avoid picking the same vertices several times. We then form one of the
partitions for the max-cut problem by picking the first n∗ vertices, this sequence
is terminated by a learnable EOS output.

6 Experiments
Since our main goal with this project was to study possible benefits of using
neural networks for solving maximum ut as opposed to using GW, we wanted to
experiment with leaning-based approaches in areas of solving maximum ut where
GW struggles. That is (i) inference speed, the maxcut is NP-hard and even
though GW is just heuristically solving it, it can still be relatively slow, (ii) how
much does further encoding of adajcency matrices with GAT help performance,
(iii) which is better for max-cut LSTM or transformer

6.1 Neural network models
Training: The neural models were trained using the same Python script. The
training was done on a T4 GPU by running the code on Google Colab. We
trained each model for 15 minutes or until convergence due to limited GPU
resources (google colab has a limit in the free tier). This early stopping is a
flaw, as performance can plateau before improving or improve very slowly. So
some of the runs may be undertrained.

Algorithm 3 Mini-batch SGD of pointer network

Input: training set D = {(x(n), y(n))}Nn=1; mini-batch size K; number of train-
ing steps L; learning rate α

Output: optimal W
1: random initial W ;
2: repeat
3: randomly reorder the samples in D;
4: for t = 1, . . . , L do
5: select samples (x(n), y(n)) from the training set D;
6: update parameters:
7: Wt+1 ←Wt + α

(
1
K

∑N
n=1 x

(n)
(
y(n) − ŷ

(n)
Wt

)>)
;

8: end for
9: until the error rate of model f(x;W) no longer decreases,

10: or the set time has passed

19

6 EXPERIMENTS

Inference: The test inference was done on a GPUs. We used Google Colab
to access GPUs. We did not compile the models before we tested the inference.

6.2 Results
The experiments performance evaluation was done on 1000 graphs (with 70 ver-
tices) created with projection planting. The models that were tested were (i)
transformer implementation of the encoder-decoder, (ii) LSTM implementation
of the encoder-decoder, (iii) and lastly another transformer implementation of
the encoder-decoder, but this time also a graph attention network used to im-
prove the encoding of the vertex encodings, instead of representing vertices by
a (learnable) linear projection from it’s row in the adjacency matrix (like we do
in the other two models.

Transformer LSTM Transformer & GAT
80%

85%

90%

95%

100%

0.878 (GW lower bound)

100 100

90

100 100

88

Sc
or

e
(%

)

Cut / Max-Cut partition accuracy

Figure 7: Comparison of three models with GW lower bound reference, on
graphs with 70 vertices.

Partition accuracy. the accuracy for the partitions generated were defined
by the Hamming error code detection.

Definition 6.1. Hamming error code metric as partition accuracy metric. let
y ∈ {0, 1}n be some optimal partition of vertices, and let ŷ ∈ {0, 1}n be the
optimal max-cut partition. We then define the partition accuracy as

HamErr(ŷ, y) = 1

n
min {||ŷ − y||0, ||ŷ − (1− y)||0}

20

7 CONCLUSION & CONTINUED WORK

Cut optimality. We define the cut optimality as the summed cut over all
1000 graphs divided by the summed max-cut score obtained by the optimal
planted solutions for all 1000 graphs.

7 Conclusion & Continued work
I didn’t test the learning based models to their full extent. The aim was more
to show that it is possible, and to lay the first foundation. The results clearly
show that neural network has potential to compete with SDP as a way of solving
max-cut problems.

Areas where Deep Learning has potential: We can see that the inference
speed in the transformer is always the fastest, and gets faster compared to the
other two as the graph size grows. If we can successfully scale and improve the
transformers decent results on the small graphs we could get a good alternative
to Goemans–Williamson if we need a fast estimation.

7.1 Improvements for Neural Networks
Several improvements could enhance the performance of the neural network
models. Some obvious like hyperparameter optimization, and some less obvious
like better (adjacency matrix) row encoding.

1. More sophisticated row encoding - We used either a linear projection
from the row in the adjacency matrix, or a vertex encoding from a GAT
network. One possible improvement could be to try and combine these
instead of just using one. One could also consider using the pagerank
algorithm as a way of encoding a vertex’s importance by how many other
nodes it is connected to, since that is what is important for the max-cut.

2. Longer training duration — especially for the Transformer, training
for more epochs would likely benefit performance on larger graphs (n =
20, 30, 50).

3. Larger training dataset — generating more training would allow us to
longer without overfitting.

4. Better compilation and optimization of models

5. Weight pruning or compression - inference speed

6. Hyperparameter tuning - performance

7.2 Continued work
Like mentioned earlier i didnt really push the models to their full capacity due
to lack of GPU resources, it woudl be interesting how well these models could
perform at larger graphs. Something that was never explored in this study

21

REFERENCES

was how well these model can be trained with reinforcement learning. This is
very interesting because of the high efficiency of thee GW algorithm for mot
graphs, and because it then is hard to generate targets for training data for
these graphs. just generating them and training with reinforcement learning
could be interesting as it would let us train without targets. It would be really
interesting to see how well the neural networks would perform on FS graphs
compared to the GW algorithm.

References
[1] Shenshen Gu and Yue Yang. A deep learning algorithm for the max-cut

problem based on pointer network structure with supervised learning and
reinforcement learning strategies. Mathematics, 2020.

[2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In International
Conference on Learning Representations (ICLR), 2018.

[3] E. A. Yıldırım and H. Wolkowicz. On the exactness of semidefinite re-
laxation for the maximum cut problem. SIAM Journal on Optimization,
12(2):350–366, 2001. Proves that Goemans–Williamson’s SDP relaxation is
exact for complete bipartite graphs K(n, n) and graphs containing them as
spanning subgraphs.

[4] Michael X. Zhou. A benchmark generator for boolean quadratic program-
ming. Unpublished manuscript / internal technical report, 2024. Section
2, Lagrangian stationarity formulation and planted-solution construction.
Available in trainingData_paper.pdf.

22

